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ABSTRACT

This paper proposes a multi-layer agent-based architecture for Intelligent Tutoring Sy-
stems (ITS). It specifies how the agents reason about by using attitudes such as beliefs (B),
desires (D) and intentions (I) and adopts the formal methods of BDI logic. In an attempt to
bridge the gap between agent theories and real agent systems, it proposes an algorithm of

agent behavior in the multi-agent environment and applies this algorithm in a real tutoring
session.

INTRODUCTION

As the term agent is used widely these days, the problem of the agent definition
is raised. Several attempts have been made for the definition of the agent (in the
concept of Artificial Intelligence). Marvin Minsky says [18]: “In the Society of
Mind [19], the idea was to use the word agent when you want to refer to a machine
that accomplishes something”, N. Shardlow suggests “Agents do things, they act:
that is why they are called agents” [27], while other researchers use notions to de-
scribe an agent that are normally applied to humans, such as knowledge, beliefs,
desires, intentions, capabilities, choices, commitments or obligation, [28, 6, 23] or
even emotions [2]. Wooldridge and Jennings in [30] use a broader definition and
argue that an agent denotes a hardware or software-based system that exhibits pro-
perties such as autonomy, social ability, reactivity, and pro-activeness. Several
other agent properties have been suggested by other researchers. These include mo-
bility, veracity, benevolence and rationality.

In our work, we consider an agent as an intentional system based on the de-
scription of the philosopher Daniel Dennett, who, by this term means entities “who-
se¢ behavior can be predicted by the method of attributing belief, desires and ratio-
nal acumen” [7]. The occasions where the intentional stance is appropriate have
been discussed by McCarthy [17], and later by Seel [26] and Rosenschein and
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Kaelbling [24] showed that more or less every object can be described by the
intentional stance. In addition to the fact that an intentional system seems to be a
necessary condition for agenthood, it is a sufficient condition, too, as it is pointed
out by Shardlow in [27]. Concluding that an agent is a system that is most
conveniently described by the intentional stance, Wooldridge and Jennings [30]
consider that the appropriate attitudes for representing agents are classified in infor-
mation attitudes (belief and knowledge) which are related to the information that an
agent has about the world it occupies, and pro-attitudes (desire, intention, obliga-
tion, commitment, choice etc.) that in some way guide the agents’ actions.

For the conceptualization of an agent (and more generally, of a multi-agent sy-
stem), in this paper the logical framework developed by Rao and Georgeff in [23] is
adopted and their formal methods for representing and reason about agents’ pro-
perties are used. According to these, a multi agent system is viewed as having the
three mental attitudes of belief, desire and intention (BDI). Beliefs are the informa-

tion (which may be incomplete or incorrect) the agent has about the world he acts

upon and the information he sends to the world; they represent an agent’ s informa-
tional state. Desires are the tasks or the objectives that the agent is allocated or has
to accomplish and represent the agent’ s motivational state. Intentions are the agent’
s commitments to a desire and represent his deliberation state. In addition, every
agent contains a plan library. Plans are the possible ways that an agent can bring
about an intention. In general, a plan is a partial commitment on how to achieve a
desire. The BDI formalism has been chosen as the underline formalism of our
architecture because it captures the intentional stance and it has an associated ma-
thematical theory with sound and complete axiomatizations and methods for the sa-
tisfiability and validity of formulas; such axiomatizations and methods are discus-
sed in [23].

This paper is part of an ongoing research effort with threefold objective:

(/) to propose and formally substantiate an agent-based architecture of an ITS that
encompasses mental attitudes such as beliefs, desires and intentions,

(if) to describe how the agents in a multi-agent tutoring environment reason, act
and negotiate, and

(iii) to contribute in bridging the gap between agent theories and real agent appli-
cation.

The design and development of an ITS-generator called X-GENITOR has been se-
lected as an implementation testbed.

Thus, after presenting in section 2 the formal methods and properties of the BDI
formalism and discussing other agent-based systems, the redesign of GENITOR, an
existing ITS-generator, into X-GENITOR, an agent-based system, is deseribed in se-
ction 3, together with an algorithm of agent behavior and a brief example. The pa-
per concludes with a summary of the work and future research of the authors.

N
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BACKGROUND

1. BDI Formalism

The notion of BDI agent is inspired from the philosophical theories of Bratman
[3], who argues for the significance of the intention attitude in practical reasoning
and the reasons why it is not reducible into beliefs and desires. A BDI logic is a
multi modal temporal logic based on the branching time logic CTL* [8]. The basic
concept of the BDI logic is the transformation of a decision tree and the functions
applied to it, to an equivalent model that represents beliefs, desires and intentions as
accessibility relations over a set of possible worlds. Each world is a time tree with a
single past and a branching future, with nodes corresponding to a possible system
state and representing the options available to the system itself or the state of the
environment which the system is embedded in, and with arcs (transitions) repre-
senting the different system actions for the achievement of an objective.

In this way, there are belief-, desire- and intention-accessible worlds correspon-
ding to the states that the system believes to be possible, desires to bring about and
intends to bring about, and belief-, desire- and intention-accessibility relations ((B,
D and I, respectively) which are the transitions between the worlds. The syntax and

semantics of the BDI logic which is adopted in the proposed multi agent archi-

tecture are described in [23]; in the following only its basic properties are briefly
presented,

The normal modal system KD435 (weak-S5) is adopted for beliefs, while the K
and D axioms are adopted for desires and intentions. K-axiom states that if an agent
believes (desires or intends) p and believes (desires or intends) that p > g then he
will believe (desire or intend) ¢ D-axiom says that the agent’ s beliefs (desires or
intentions) are not contradictory. 4-axiom and 5-axiom are respectively the positive
and negative introspection axioms: 4-axiom states that an agent is aware of what it
knows and 5-axiom says that an agent is aware of what it does not know. The
axioms of the KD-35 system are summarized in Figure 1, where p, g are proposi-
tions of the classical propositional logic, “A”and “=” are the propositional connecti-
ves for conjunction and implication, and BEL, DES and INTEND are modal operators
representing the agent’s beliefs, desires and intentions respectiviely.

Beliefs Desires Intentions
K-axiom | BEL(p) A BEL(p 2 ¢) DES(p) A DES(p2g)  INTEND(p) A INTEND(p o ¢q)
> BEL(g) = DES(y) O INTEND(g)
D-axiom | BEL(7) > =BEL(—p) DES(p) > —=DES(—p) INTEND(p) o SINTEND(—p)
4-axiom | BEL(p) > BEL(BEL(p))
S-axiom | -BEL(p) o BEL(=BEL(p))

Figure 1: The axioms of the KD45 system.
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The necessitation rule is applied in beliefs, desires and intentions (Figure 2):

I Necessitation rule

Beliefs If | pthen | BEL(p)
Desires If | p then } DES(p)
Intentions | If | p then |} INTEND(p)

Figure 2: The nccessitation rule for beliefs, desires and intentions.

As the belief-, desire- and intention-accessible worlds are sets and in the same ti-
me are time trees, there are set relationships (<, m ete)) and structure relationships
(sub-world, identical or incomparable worlds) between them, Depending on the
combinations of the above relationships and the axiomatizations of them, three
constraints are under consideration: strong realism (21], realism [6] and weak rea-
lism [22]. We will describe some of the characteristics of the weak realism, as it is
the adopted constraint for our agents; the reader may refer to [21], [6] for the other
two constraints. The intersection between the belief-accessible worlds and desire-
accessible worlds is not null and an agent does not desire a proposition the negation
of which is believed. The same holds between desire- and intention-accessible
worlds and between belief- and intention-accessible worlds. An agent does not in-
tend a proposition the negation of which is desired or believed (Figure 3).

Semantic Condition Distinguishing Axiom
B Dz BEL(p) > =DES(—p)
BTa Wk DES{p) o —INTEND(—p)
BnIz0 BEL(p) > —INTEND(—p)

Figure 3: The adopted BDI modal system.

Some other properties that are satisfied by the adopted model are the asymmetry
thesis proposed by Bratman [3] and extended by Rao and Georgeff [22] and the
consequential closure principles. According to the asymmetry thesis, intention-
belief, intention-desire and desire-belief inconsistency is not allowed, whereas

intention-belief, belief-intention, intem\ion—desire, desire-intention, desire-belief and
belief-desire incompleteness is allowed (Figure 4)*

) « } means that the formula which follows is valid.

) ‘|=" is the satisfaction relation and means that the formula which follows is satisfiable.


daisy
Rectangle


Asymmetry Thesis

intention-belief consistency |= INTEND (p) > = BEL(—=p)
intention-desire consistency |= INTEND (p) o> = DES(—p)
desire-belief consistency |= DES(p) > -~ BEL(—p)

intention-belief incompleteness | |= INTEND (p) > BEL(p)
belief-intention incompleteness | |2 BEL(p) D INTEND(p)
intention-desire incompleteness | |# INTEND (p) > DES(p)
desire-intention incompleteness | |# DES (p) o INTEND(p)
desire-belief incompleteness |= DES(p) o BEL(p)
belief-desire incompleteness |# BEL (p) o DES(p)

Figure 4: Asymmetry thesis principles.

Although, consequential closure is referred in the literature [1,6] as a probiem(S},
Rao and Georgeff argue that it can be seen as a property that needs to be satisfied
[23]: *“... it is rational for an agent to intend p and at the same time not intend g, no
matter how strong the belief about p > g”. The so-called belief-intention conse-

quential closure principle is required between intentions and desires, and between
desires and beliefs, too.

2. Architectural Approaches

Several agent-based architectures have already been proposed in the literature.
For example, Procedural Reasoning System (PRS) [12], one of the first imple-
mented systems based on a BDI architecture, contains a plan library and explicitly
represents beliefs, desires and intentions. Beliefs are facts, expressed in first-order
logic, and represent the state of the environment or the internal state of the system.
Desires are dynamic representations of the system behavior. Plans, called know-
ledge areas, are associated with an invocation condition and may be activate or
reactive. The active knowledge areas are the system’s intentions. All those date
structures are manipulated by the system interpreter. PRS and its successor dMARS
have been evaluated in a number of large scale applications such as maintenance
procedures of the space shuttle, telecommunications network management, air-
combat modeling and business process management. [ntelligent Resource-bounded
Machine Architecture (IRMA) [4], like PRS, is an implemented BDI architecture and
includes a plan library and data structures for representing beliefs, desires and
intentions. In addition, it contains a reasoner, a means-end analyser, an opportunity
analyser, a filtering process and a deliberation process which are responsible for

& Intuitively, it states that if an agent intends to do an action he has to intend all the side-effects of
such an action. ’
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reasoning, choosing options, determining intentions and actions, and observing the
world. IRMA has been evaluated in the Tileworld [20] experimental scenario. On the
other hand, GRATE* [15], is a layered architecture in which the agents are characte-
rized by the mental attitudes of beliefs, desires, intentions and joint intentions, and
consists of a domain level system which is responsible for the organization, a coo-
peration layer which interfaces to the domain level system and specifies the agents’
actions for cooperative problem solving, and a control layer responsible for the
domain level system’s activities to be coordinated with those of the other agents of
the environment. GRATE* has been evaluated in electricity transportation manage-
ment. Although, the above systems have been evaluated in a broad range of do-
mains, it has not proven that these approaches are applicable to the special require-
ments of ITS. Furthermore, the agent-based [TS architectures that have been deve-
Joped focus primarily on inter-agent communication and not on the representation
of the ITS modules. For example, GIA [5] adopts a federated architecture [11], with
a set of facilitators and a set of kernel and interfuce agents, and supports both
standalone and networked configurations. The principal research task of the GIA
project lies in the design of an expressive formal language and in the identification
of the properties of such a language for the demands of an ITS. FITS [14], is a plat-
form independent shell and contains agents for student and learner modeling. Like
GIA, FITS is concerned primarily on communication between agents.

In this paper, an agent-based architecture for GENITOR, an 1TS generator is
described. Consequently, the modeling scope is far broader than the approaches
described above, in that it has to meet design requirements such as massive agent
generation, agent communication and synchronization, specification of a large
number of agents with diverse objectives by non-computer experts etc. The adopted
BDI formalism sets a well-defined formal framework that does not constraint the
flexibility and variability inherent in a tutoring session. Nevertheless, existing
architectures have to be extended in order to meet the aforementioned special re-
quirements.

THE PROPOSAL

N
1. The Tutoring Architecture of GENITOR

GENITOR [16] is an ITS generator that can be used for the development of auto-
nomous intelligent training applications in diverse subjects [13], [10]. Such an ap-
plication attempts to transfer to the trainees two kinds of knowledge: procedural
knowledge on how to apply a methodology and declarative knowledge to support
the application of the methodology.

The declarative knowledge in a GENITOR application consists of Application
Learning Units (ALU). ALUs are hypermedia constructs of monomedia Leamning
Units (LU) and make up the domain base of the application. ALUs, are described
by attributes that represent both static information used to identify the unit (i.e. title,
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type, location, size etc.) and dynamic information that describes the behavior of the
unit (i.e. pedagogical prerequisites and objectives, display constraints etc.).

The learning scenario embedded in an application developed with GENITOR is
made up of stages. A stage is an integral application module and implements a
certain instructional strategy as part of the learning scenario. It contains its own
domain base (which is a subset of the application domain base) and manages its
own tutoring interface, offering tutoring actions to students and attempting to
satisfy the tutoring goal hierarchy described in the instructional strategy specified
by the application authors.

In order to develop an ITS, authors have to use the tools of GENITOR in order to
describe the methodology to be taught (procedural knowledge base) and develop
the LUs and ALUs of the declarative knowledge base. Two expert systems, MeT
[32] and DES, assist authors during this process, while they guide domain
presentation during ITS execution. Actually, in the latest version of GENITOR, MeT
has been replaced with HMeT [33], a hybrid expeit system that uses three agents
during the tutorin process. The authors have to describe the learning cycle by
initializing appropriately the system-offered stage templates. The system offers a

consistent user interface for all its tools, and is also equipped with an application
prototyping facility.

2. The Proposed New System Architecture

The new architecture of X-GENITOR will be populated by autonomous, self-
reactive agents who are knowledgeable of the capabilities of each other and are able
to collaborate by forming teams. As a result, they will be able to accomplish com-
plex tasks or tasks which cannot be performed by one agent itself. These agents,
who have evolved from the GENITOR ALUs concept, will have their own user inter-
face and make use of multiple media formats, while several instructional strategies
and user models are represented in their mental states.

All these require the development of formalisms and algorithms for team forma-
tion and team action, together with protocols for communication and mechanisms
for handling the user interfaces. In order to better estimate the feasibility of the
approach, the complexity of the process and the effort required, a first prototype of
\_GENITOR has been built around a hierarchical multi-layer architecture (Figure 5),

which constitutes a simplification of general deliberative agent architectures with
the following assumptions:

. The agent hierarchy consists of two levels, top and bottom.

. There exists only one agent (Pedagogy Agenf) at the top level, who has know-
ledge of all other agents and the tasks thdy can accomplish, and can refine a
composite goal into simpler tasks.

. All other agents (dpplication Learning Unit Agents (ALU-Agents)), who reside
at the bottom hierarchy level, have knowledge of (a) the top level agent, and (b)
the tasks they can accomplish.
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* A point-to-point communication protocol between the top level agent and the

ALU-Agents has been adopted; no direct communication takes place among the
ALU-Agents,

» For implementation purposes, a User Interface Agent has been introduced, who
is responsible for the interaction between the trainee and the system; this agent is
not part of the hierarchy.

The modeling of the trainee and of the user interface agent falls outside the sco-
pe of this paper. The trainee is seen only as an event generator whose events affect
the agents’ mental state. The User Interface Agent which can be modeled with a
BDI. logic, handles the user events, determines the running procedures in the user
interface and sends requests to the Pedagogy Agent. If the latter can fulfill these re-
quests then he responds to the user interface agent, otherwise he passes the requests
to one or more ALU-Agents.

v

User Interface

A

Y
Q User Interface Agent j
A
¥
Q Pedagogy Agent 7

A

A

Figure 5: System architecture.

The Pedagogy Agent can access several instructional strategies and acts accor-
ding to these. He also knows which of the ALU-Agents have the skills to accom-
plish a certain task contained in an instructional strategy. Because of this know-
ledge, he can adopt intentions about a task which he knows that can be accompli-
shed by some ALU-Agents. In fact, he can form teams of ALU-Agents. ALU-
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Agents contain elementary course parts about the teaching subject. An elementary
course part can be exhibited in several different ways; this depends on the ALU-
Agent skills, the instructional strategy and the user model. The latter does not com-
prise a separate agent or component. Instead, it is implicitly specified in the precon-
dition of the ALU-Agents plan. An ALU-Agent has no knowledge of the other
ALU-Agents and the only thing it knows is how to bring about his intentions. This
means that when a team formation takes place for the accomplishment of a higher
goal none of the team members knows the existence of the others except the

Pedagogy Agent, which knows all about team members and is the one who coordi-
nates the team formation and activity.
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Figure 6: Agent architecture.

The proposed architecture (Figure 6) is a deliberative one, i.e. it contains an
explicitly represented symbolic model of the world and the decisions are made via
logical reasoning based on pattern matching and symbolic manipulation. The close
relation between symbolic processing systems and mathematical logic made this
choice desirable in the sense that a BDI architectire can be easily implemented in
conjunction with well known Al techniques and established software engineering
methodologies.

The mental state of the agent consists of beliefs, desires and intentions as those
described earlier. Each of these can be implemented as data structures {ic.
PROLOG-like facts or rules). Plans represent the procedural knowledge or know
how [31] of an agent. They specify the ways that an agent brings about his inten-
tions. Typically, plans contain a descriptor part which describes the pre-conditions
for plan triggering and a body part which describes the actions that will take part in
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the plan execution®®

The Inference engine is the mechanism which handles and updates the agent
mental state (beliefs, desires and intentions), selects, executes and rejects plans
(according to the mental state), and is responsible for the preservation of the
properties of the model. The Communication component transfers the observations
of the world as well as the current state of the agent to the world. The Communica-
tion component entails a kind of openness, in the sense that different programming
languages could be used for the agents implementation but just one communication
protocol, such as KQML [9]. However, the proposed system does not contain such
heterogeneous agents and the communication component plays the role of the
transformer of the internal System protocol to agent’s internal language and vice
versa. All communication actions performed by an agent are treated in the same
way as in the speech acts theory [25]: every intended communication action from
an agent changes the world in an analogous way a physical action does.

Each agent operates according to the following algorithm. Each single iteration
of the loop occurs at regular intervals in the same way as in [28]

Algorithm
(1) check for events:
if there are no events then wait for events
else select an event p
(2) check mental State for p
(3) adopt an intention for p
(4) find the plans concerning p and execute the ready to fire one
(5) revise mental state

(6) goto(l)

The events that occur in the environment and concern the current agent or the
events caused by the adopted intentions are keptin a queue. The agent reacts to the
events and checks his mental state to confirm which of them are consistent with his
mental attitudes, that is, he checks whether the distinguishing axioms hold (Figure
3). Then, he either adopts an intention to execute the requested action or rejects it.

form the agent which requested the action, for the rejection. When the agent is
committed to bring about p then among the plans concerning p only some of them
are ready to fire. Randomly, one of them is executed. If a plan will fail then another
one from the ready to fire is selected. After the plan execution, independently of
success or failure, the adopted intention is dropped, the agent mental state is

updated and the environment is informed by causing an internal event g and
adopting an intention about q.

® Several researchers have developed specifications for plan formations using BDI logic [31], [29].
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3. Example

Consider an ITS which teaches the concept of gravitation and an instructional
strategy contained in the Pedagogy Agent consisting of the following stages:
1. Stage 1: “Show the theory from the general to specific”

2. Stage 2. “Let the trainee explore the mathematical equations and the ge-
neral theory”

3. Stage 3: “Show examples”
Consider, also, that the following ALU-Agents are needed” :

1. ALU-Agentl: “Elements of the theory of gravitation”

. ALU-Agent2: “Mathematical description”

. ALU-Agent3: “Acceleration and velocity in a gravitational field"
. ALU-Agentd: “Earth's gravitational field”

. ALU-Agent5: “Example: The experiment at the tower of Pizza”

. ALU-Agent6: “General theory: Fields", “General theory: Forces”, “Ge-
neral theory: Moving objects”, “"General theory: Falling objects”

=N B - TS R o)

When the above instructional strategy is executed, the Interface Agent requests
Stage 1 from the Pedagogy Agent which in turn adopts intention “Show the theory
Jrom the general to specific” and requests from ALU-Agentl, ALU-Agent2, ALU-
Agent3, ALU-Agent4 and ALU-Agent6 to accomplish a particular task. For exam-
ple, he requests from ALU-Agentl to accomplish the task “Elements of the theory
of gravitation”, from ALU-Agent6 to accomplish the task “General theory” and so
on. In particular, ALU-Agent6 decides on his own, according on his plans, which
of the course parts should be executed. When all ALU-Agents accomplish their
tasks, they send the results to the Pedagogy Agent; he composes the parts and
determines the order that they will be presented and informs accordingly the Inter-
face Agent which is now responsible for the course parts exhibition. When the Sta-
ge 1 is finished, the Interface Agent requests the next stage from the Pedagogy
Agent and an analogous process takes place. Finally, in the Stage 3, the ALU-
Agent5 is requested for the task “Example: The experiment at the tower of Pizza”.
Then, according to the user model, implicitly represented in pre-conditions plans of
LUs, he may determine the way that the course part will be presented (e.g. simple
text, animation, video etc.). In a more analytical example, stages should be further
refined into sub-stages in order to adopt the training session to the particular needs
of each student. This would, of course, require a deeper analysis of the subject do-
main, which in turn would lead to a more densely populated agent society and
would require a more complex algorithm for the description of agent behavior.
However, due to space limitations, the example is of the minimal necessary com-
plexity in order to demonstrate the basic ideas underlying this paper.

) The tasks accomplished by each agent are included in double quotations. All agents accomplish
one task except ALU-Agent6 who accomplishes four tasks.
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There are cases where an agent can not bring about a goal in his own but he
knows that some other agents can do so. For example, assume that the User Inter-
face Agent (UIA) requests p from Pedagogy Agent (PA) and PA does not explicitly
believe p; instead, he believes » A s D p, and he also believes that ALU-Agentl
(ALUAIL) and ALU-Agent2 (ALUA2) believe r and ALU-Agent3 (ALUA3)
believes s. Then PA adopts an intention about p and requests » and s from ALUAI
and ALUA?2, respectively, which, in turn, adopt intentions about r and s. Let,
ALUA?2 accomplishes successfully s and informs PA about this, whereas ALUAI
does not accomplish successfully r and informs PA about the failure. Since PA
believes that ALUA3 can, also, adopt intentions about , he requests r from him. If
ALUA3 will accomplish successfully r, then p is accomplished and PA drops his

intention about p and informs UIA about this; otherwise he informs UIA about the
failure.

CONCLUSIONS

This work considers an agent as an intentional system, specifying its behavior
with attitudes such as beliefs, desires and intentions. It adopts the formal methods
of BDI logic and proposes a multi-layer agent-based architecture of an ITS and an
aleorithm of agent behavior in a multi-agent environment. Thus, this work attempts
to contribute to the bridging of the gap between the agent theories and real agent
applications. However, it is a mid-step between the modular systems and the auto-
nomous, reactive multi-agent systems. Although the simplifications embodied in X-
GENITOR weaken the overall system, in the sense that only one agent has a global
awareness for the other agents and their skills in the environment, he is the one
responsible for the task assignment and he determines the roles inside the team, the
results from this attempt were encouraging, leading us to helpful conclusions about
the used mental attitudes, the team formation, the negotiation and collaboration as
well as the refinement of the used algorithm. Our future research aims to massive
agent generation from ITS generators which act in common environment, negotiate
and compose teams for task accomplishment without the intervention of others (e.g.
Pedagogy Agent). We envisage ALU-Agents which have knowledge of the envi-
ronment and the capabilities of the other agents, handle their own user interface and
contain several instructional strategies and user models in their mental states.
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